
979-8-3503-9766-6/22/$31.00 ©2022 IEEE 

Accurate and Efficient Proximity Effect Correction 

for Electron Beam Lithography Based on Multilayer 

Perceptron Neural Network 

 Wenze Yao 

College of Electrical and Information 

Engineering 

Hunan University 

Changsha, China 

wenzeyao@hnu.edu.cn 

Yujie Yang 

College of Electrical and Information 

Engineering 

Hunan University 

Changsha, China 

yujieyang2426@hnu.edu.cn   

Jie Liu 

College of Electrical and Information 

Engineering  

Hunan University  

Changsha, China  

jie_liu@hnu.edu.cn 

Hongcheng Xu 

College of Electrical and Information 

Engineering 

Hunan University 

Changsha, China 

hongchengxu@hnu.edu.cn  

Siyuan Zhang 

College of Electrical and Information 

Engineering 

Hunan University 

Changsha, China 

siyuanzhang0103@hnu.edu.cn 

 Haojie Zhao 

College of Electrical and Information 

Engineering 

Hunan University 

Changsha, China 

haojie_zhao@hnu.edu.cn 

 Xin Zhang 

College of Electrical and Information 

Engineering 

Hunan University 

Changsha, China 

zhangxin2302@hnu.edu.cn 

Abstract—This paper proposes a proximity effect 

correction (PEC) method for electron beam lithography (EBL) 

using multilayer perceptron (MLP) neural network (NN). By 

leveraging the symmetric characteristics of the point spread 

function (PSF), several annular regions divided around the 

exposure point are used as the input of NN. The exposure dose 

after traditional model-based PEC is used as the output when 

training NN. The PEC inference error of trained NN for 

grating with different periods can reach the same level as 

model-based PEC method (relative error is less than 1%). 

Meanwhile, the inference speed of the NN-based PEC is more 

than 7~10 times faster than that of the model-based PEC, 

which can significantly enhance the efficiency of PEC. 

Keywords—electron beam lithography, proximity effect 

correction, multilayer perceptron, neural network 

I. INTRODUCTION 

Electron beam lithography (EBL) is a high-resolution 
technique, which can manufacture the sub-10 nm precision 
device [1, 2]. The grating structure is a periodic pattern 
widely used in surface acoustic wave (SAW) devices [3], 
optical phased array [4], etc. However, the electron beam 
scattering in the resist and substrate seriously jeopardizes 
the fabrication quality, which is named the “proximity effect” 
(PE) [5]. As shown in Fig. 1, when exposing a small target 
region (blue area), the incident electrons are scattered and 
reflected by the resist/substrate, leading to undesirable 
exposure of a large region (orange and even green areas). 
The point spread function (PSF) is introduced to quantify 
the energy deposition distribution of this electron beam 
scattering. Therefore, proximity effect correction (PEC) is 
an extremely important step, especially for complex layouts 
at the nanoscale. 

The mainstream model-based PEC methods [6, 7] are 
used to correct the pattern shape and incident dose of the 
exposure layout via iterative optimization. Although such 
methods can achieve high PEC accuracy, as the critical 

dimensions (CD) of EBL fabrication are further reduced, the 
computational cost of the model-based PEC rises sharply. 
In recent years, machine learning technology has prevailed 
in the field of lithography, which can avoid complex 
iterative operations. In the field of PEC, the unsupervised 
neural network (NN) [8] method result in a considerable 
improvement in speed. But for nano-sized CD nodes, the 
inference accuracy of the network is difficult to meet the 
design requirements. In [9, 10], MLP NN applied to the 
optical proximity correction (OPC), which has high OPC 
accuracy and efficiency, has an important impact on the 
study of PEC methods based on machine learning 
technology. Although MLP NN is mostly used in the OPC, 
similar methods have seldom been reported in PEC for EBL. 

In this work, we propose an accurate and efficient PEC 
method based on the multilayer perceptron (MLP) NN. 
According to a specific EBL simulation condition, the MLP 
NN training samples are obtained through the traditional 
model-based PEC method. The input and output layers of 
NN are set in a given mode, and a convergent network 
model is constructed and trained. The trained model can 
directly infer the exposure dose after PEC, under the 
corresponding training EBL conditions. This method can 
effectively avoid the complex PEC iteration process, and 
thus improve the PEC calculation efficiency. In this article, 
we train MLP NN based on the grating structure to verify 
the effectiveness of the proposed method.  

In section II, the PEC computation process and the MLP 
NN architecture training method are explained in detail; in 
section III, a series of layouts are used to quantitatively 
show the efficiency and accuracy of the proposed method; 
in section IV, we make a summary of this paper. 
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Fig. 1.  Schematic diagram of the energy distribution of electron beam 

exposure. 

 

II. MODEL AND METHOD 

This section separately illustrates the traditional model-

based PEC method, the proposed MLP NN architecture, 

and the NN training process. 

A. Model-based PEC process 

The scattering model of the electron beam on resist and 

substrate is mainly composed of forward scattering and 

back scattering. Without loss of generality, here the energy 

distribution curve of electron beam exposure is represented 

by a double Gaussian (2G) PSF [5] 

 P(r)=
1

π(1+η)
[

1

α2
exp (-

r2

α2
) +

η

β
2

exp (-
r2

β
2
)] (1) 

where α, β, and η representing the forward scattering range, 

back scattering range, and the ratio of forward scattering to 

back scattering energy density. And α, β, and η are 

determined by thicknesses and materials of resist and 

substrate, and can be computed using the Monte Carlo 

method [11]. 

The energy deposition density distribution after electron 

beam exposure is expressed by 

 E(r) = ∑ P(|r-ri|)
N

i=1

D(ri)s
2 (2) 

where E(r) is the energy deposition distribution at the pixel 

r  and D(ri)  is the incident electron dose in the ith mesh 

(1≤i≤N, and i∊Z); s is the actual side length of each mesh; 

N is the total number of pixels.  

The mainstream PEC method is to obtain the uniform 

energy deposition E(r)  by adjusting the exposure dose 

D(ri). In this paper, we construct training samples through 

an model-based PEC method [7], and we compare the 

accuracy and efficiency of the proposed method with this 

method (section III). 

The threshold model is used to simulate the development 

process after electron beam exposure. The contour after 

development can be expressed as 

 φ(r) = {
0, E(r) < τ

1, E(r) ≥ τ
 (3) 

where τ  is the development threshold; φ(r)  is the 

developing contour function at the pixel r. When the energy 

deposition of the exposure pixel is greater than the 

development threshold, it is regarded as complete 

development; otherwise, it is regarded as undeveloped. The 

error after development is defined as 

Error = 
∑ | φ(ri)-T(ri) |

2N
i=1

N
 (4) 

where φ(ri) and T(ri) are the development matrix and the 

target layout matrix, respectively. 

 
Fig. 2.  The architecture of the proposed PEC method by MLP NN which includes obtaining input layer parameters by PSF, inference process, backpropagation 

method, etc. 
 

B. MLP NN architecture 

The MLP NN architecture includes three parts: an input 

layer, the hidden layers, and an output layer as shown in 

Fig. 2. For each pixel in the layout Imn (1<m<M, 1<n<N, M 

and N are the length and width of the layout matrix, 

respectively), we use L1, L2, ..., Ll (l>2) as the boundary to 

divide the PSF into l equal integral areas S1 , S2 , …, Sl , 

where the area integrals of l regions satisfy S1=S2=…=Sl. 

The maximum PSF radius is set to 95% of the entire 

exposure energy. The layout exposure ratio in each ring 

area d1, d2, …, dl is set as the MLP NN input neuron label  

dl=
Pl

4(Ll
2-Ll-1

2)
 (5) 
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where Pl  is the exposed area in the ring-shaped area 

bounded by Ll-1 to Ll.  

For the jth (j=1, 2, …, J; J is the number of neurons in 

this layer.) neuron, it receives the input signal xi (i=1, 2, …, 

I; I is the number of neurons in the previous layer) whose 

weight is denoted as wij . Through “tansig” activation 

function, the output value calculated by the jth neuron is 

expressed as 

y
j
=

1-e-2 ∑ xi wij
I
i=1

1+e-2 ∑ xi wij
I
i=1

 (6) 

The loss function of MLP NN is  

 Loss=
1

MN
∑ ∑  (f

mn
− f̂

mn
)
2

N

n=1

M

m=1

 (7) 

where f
ij
 is the corrected exposure dose obtained through 

model-based PEC method; f̂
ij

 is the forward inference 

results after each optimization of MLP neuron weights.  

The back propagation (BP) algorithm minimizes the loss 

function by repeatedly modifying the weights wij, and the 

correction factor Δwij of the weight wij is  

Δwij= -σ
𝜕Loss

𝜕wij
 (8) 

where 𝜕Loss

𝜕wij
 is the partial derivative of the loss function with 

respect to the weight on the neuron, which is following the 

chain derivation rule; σ  is the learning rate. Each MLP 

training will correct the neuron weights of the entire 

network until the loss function is lower than the preset 

accuracy. 

C. PEC with MLP NN 

After introducing the traditional PEC method and the 

proposed MLP NN architecture, the MLP NN-based PEC 

method is as follows: 

Step (1) EBL process simulation. PSFs are simulated and 

fitted for the specified EBL process parameters. The 

calculated PSF represents the energy deposition 

distribution of electron beam scattering in this EBL process.  

Step (2) Sample generation. A series of equally spaced 

grating layouts with different periods are designed. Model-

based PEC calculations are performed on these layouts by 

traditional dose-based PEC methods. Each original target 

layout is matched with the layout after PEC as MLP NN 

training samples. We further increase the diversity of the 

data set through processing methods such as flipping and 

translation. 

Step (3) MLP NN training. The energy deposition at a 

pixel of the photoresist is only related to the linear distance 

between this pixel and the exposure pixel. We divide the 

exposure pixel into l annular regions affected by a specific 

PSF. After establishing a fully connected MLP NN, a series 

of parameters are set such as the activation function of each 

layer, MLP NN training function, learning rate, and 

convergence conditions. Finally, we cyclically traverse 

each exposure pixel of all training layouts designed in Step 

(2) for MLP NN training.  

Step (4) MLP NN inference. We obtain the weights and 

biases of each trained neuron after Step (3) for MLP NN 

inference prediction. According to the data format of the 

MLP input layer, the layout to be corrected is calculated by 

the trained MLP NN inference, and the predicted dose after 

the PEC of each exposure point is obtained. 

III. RESULT 

This paper simulates 15keV e-beam exposure of 100 nm 
thick the polymeric methyl methacrylate (PMMA) resist on 
Si substrate. The parameters α, β, and η of the 2G PSF are 
12.20 nm, 708.72 nm, and 1.15, respectively which are 
obtained by HNU-EBL software [12-14] 
(http://www.ebeam.com.cn).  

The whole training process is carried out under 
MATLAB commercial software. The number of neurons in 
the input layer is set to 12. The hidden layer is composed of 
three layers of 50×20×10 neuron structure and the number 
of neurons in the output layer is 1. The training set of MLP 
NN is used for the grating layouts of different sizes and 
cycles. The train function of NN is “trainscg” function, and 
the activation function of each layer of NN is the “tansig” 
function. 

We verify the performance of the proposed method 
compared to the PEC method in terms of accuracy and 
efficiency. As shown in Fig. 3, columns (a), (b), and (c) are 
the EBL process of direct exposure, model-based PEC 
exposure, and proposed PEC method exposure, respectively. 
From the development profile, both the model-based PEC 
method and the MLP NN method can obtain better 
development patterns compared to no PEC. The learning 

rate and convergence error are set to 0.1, 10-5, respectively. 

 

Fig. 3.  Column (a) is the EBL process from exposure dose without PEC 

to developing contour for the grating structure with a 100 nm period. 
Columns (b) and (c) are the whole process like column (a) obtained by 

model-based PEC and MLP NN PEC methods respectively. 

 

As shown in Fig. 4 (a), we design a series of grating 
comparison layouts with 40 nm width and 20 μm length. By 
adjusting the grating period T (from 120 nm to 280 nm), 
observe the changing trend of layout accuracy and 
efficiency. Obviously, as is shown in Fig. 4 (b), the 
development error obtained without PEC always maintains 
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a high level, which does not meet the requirements of 
experimental accuracy at all. The final development error 
(using Eq. (4)) obtained by the MLP NN inference can keep 
the same order of magnitude as the model-based PEC, 
generally less than 1%. As shown in Fig. 4 (c), for 

computational efficiency, the computational efficiency 
through MLP NN inference is 7~10 times higher than that 
of traditional model-based PEC. In the specified EBL 
process, the MLP NN model only needs to be trained once, 
so as to avoid repeating the complex model-based process. 

 

Fig. 4.  (a) Schematic diagram of the designed grating comparison layout. (b) Comparison of final development errors under the three methods for different 

grating cycles. (c) Computational efficiency comparison between the proposed MLP method and the traditional model-based PEC method. 

 

IV. CONCLUSION 

This paper proposes an accurate and efficient PEC 
method for EBL based on MLP NN. According to the 
characteristics of the PSF, the exposure density of the 
annular region around the exposed pixels is used as the input, 
and the model-based PEC dose is used as the output. The 
trained network can directly obtain the final PEC dose 
through inference under a specific process model, avoiding 
computationally-expensive iterative calculations in 
conventional model-based PEC calculations. This article 
trains MLP NN based on the grating structure to verify the 
effectiveness of the proposed method. The PEC inference 
error of trained NN for grating with different periods can 
reach the same level as model-based PEC method (less than 
1%), and the inference speed is more than 7~10 times faster 
than dose-based PEC.  
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